Dependence of Earth’s Thermal Radiation on Five Most Abundant Greenhouse Gases


Excellent Physics Written by W. A. van Wijngaarden and W. Happer Published on June 8, 2020

The atmospheric temperatures and concentrations of Earth’s ve most important, greenhouse gases, H2O, CO2, O3, N2O and CH4 control the cloud-free, thermal radiative flux from the Earth to outer space. Over 1/3 million lines having strengths as low as 10􀀀27 cm of the HITRAN database were used to evaluate the dependence of the forcing on the gas concentrations. For a hypothetical, optically thin atmosphere, where there is negligible saturation of the absorption bands, or interference of one type of greenhouse gas with others, the per-molecule forcings are of order 10􀀀22 W for H2O, CO2, O3, N2O and CH4. For current atmospheric concentrations, the per-molecule forcings of the abundant greenhouse gases H2O and CO2 are suppressed by four orders of magnitude. The forcings of the less abundant greenhouse gases, O3, N2O and CH4, are also suppressed, but much less so. For current concentrations, the per-molecule forcings are two to three orders of magnitude greater for O3, N2O and CH4, than those of H2O or CO2. Doubling the current concentrations of CO2, N2O or CH4 increases the forcings by a few per cent. These forcing results are close to previously published values even though the calculations did not utilize either a CO2 or H2O continuum. The change in surface temperature due to CO2 doubling is estimated taking into account radiative-convective equilibrium of the atmosphere as well as water feedback for the cases of xed absolute and relative humidities as well as the eect of using a pseudoadiabatic lapse rate to model the troposphere temperature. Satellite spectral measurements at various latitudes are in excellent quantitative agreement with modelled intensities.

A sample from Page 6 in the paper

A sample from page 35 in the Paper

Click on the Download box below to get the full 37 page paper it is worth reading if you are a serious researcher on climate physics.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.