A Technical Study in the Relationships of Solar Flux, Water, Carbon Dioxide and Global Temperatures

David Pristash
Independent Researcher

March, 2020 Data

The purpose for this paper

This paper is not meant to be a peer-reviewed work; but it is meant to give a foundation for a more serious study of the subject matter presented here which is of determining the basis of developing a global temperature. There are three areas of interest.

1) The amount of thermal energy that reaches the planet from the sun.
2) The amount of thermal energy that is initially absorbed by the planet.
3) The process on the planet that 'temporarily' holds thermal energy on the planet.

In this paper I will give a frame work for determining all three aspects.

Part One, the blackbody temperature of the planet
Part Two, the planetary greenhouse effect
Part Three, the probable range of temperatures on the planet

Appendix
NASA Table Land Ocean Temperature Index (LOTI) April 2008
NASA Table Land Ocean Temperature Index (LOTI) current to the date of this paper

Part One, the Blackbody Temperature of the Planet Earth

Determining the 'exact' blackbody temperature of the planet is the first step in determining what the "greenhouse' effect is; for without that value all else is either speculation or based on an unreliable value. This leads us to a quandary since the planet is a globe spinning around a titled axis of rotation and with an elliptical orbit around the sun Figure 1 which is the source of virtually all the energy that heats the planet. Clearly with these facts there cannot be one temperature for the planet and so, in theory, an average could be calculated but it will also be very misleading and lead to false conclusions; especially as it hides very large energy flows on the planet.

Traditional calculations of the planets black body temperature ignore the variables which then lead one to assume a steady state situation verses the real dynamic situation that actually drives climate. To justify this assumption a general statement that the variances are too small to have any meaningful effect are promoted. In some cases, maybe with fewer variables, this might be true but in this case I think not.

These are the main variables, constants and forces:

1. The sun has a primary and secondary cycle the primary is Magnetic of about 22 years (Pi times 7) which changes the polarity of the suns magnetic field which therefore gives a variation in the suns solar wind which is the more important.
2. The secondary cycle is the number of sun spots which is half the magnetic at about 11 years and that gives a small variation in the suns output of about 1%
3. The planet has an elliptical Orbit that varies by 3.34% or $4,999,849$ miles
4. The axial tilt of the planet is 23.4 degrees which causes winter and summer to alternate between Aphelion and Perihelion about every 10,000 years
5. The planet is a sphere so only one side faces the sun at any given moment
6. The sun's energy reaches the planet on a line drawn from the center of the sun to the center of the planet which only intersects the equator twice a year.
7. Actually the line from the sun to the earth is to the barycenter (center of mass) of the earth and the moon system. Which changes the distance to the sun to the earth's surface by $+/-2,858$ miles per lunar month; however this complication is ignored in the study.
8. The energy from the sun is concentrated around this line, a hot spot.
9. The planet is a sphere so the suns radiation drops off in all directions from this line by a Cosine factor to zero at the edge 90 degrees from the center line
10. The spin and tilt of the planet means that the center line, in effect, moves up 23.4 degrees from the equator and then down 23.4 degrees from the equator during the course of one orbit
11. That movement means the distribution of the energy in the hot spot also moves
12. The distribution of land and ocean are not uniform on the planet and therefore the absorption of the solar flux is very different at points the hot spot travels over.
13. The albedo of the planet is a variable not a constant mainly as a factor of the amount and kind of clouds.
14. Energy from the core adds a small amount of energy
15. Tidal forces from the sun and the moon also add some energy
16. Energy is carried North and South from the hot spot, centered on the line described in item 6, by the atmosphere and the ocean
17. The Coriolis Effect along with tidal forces drive thermal transfer north and south at an angle and these are then main contributors to the climate

Northern spring/
Northern winter/
Southern fall

Northern summer/
Northern fall/
Southern winter
Southern spring
Figure 1, the Earth's orbit

Chart 13, Solar Flux Earth

There are three sources of energy that determine the climate on the earth: the radiation from the sun which is said to be $1366 \mathrm{Wm}^{2}$ The actual value based on the orbital range is from $1414.4 \mathrm{Wm}^{2}$ in January to $1323.0 \mathrm{Wm}^{2}$ in July see Chart 13 and there is also an eleven year sun spot cycle with a range of $1.37 \mathrm{Wm}^{2}$. The hot core of the planet adds $\sim 0.087 \mathrm{~W} / \mathrm{m}^{2}$ and the gravitational effects of the moon and the sun (tides) adds another $\sim .00738 \mathrm{Wm}^{2}$. Of these three the sun's radiation is by far the most important but considering all three the range during an eleven year solar cycle is from a high of $\sim 1415.3 \mathrm{Wm}^{2}$ to a low of $\sim 1322.4 \mathrm{Wm}^{2}$ so a more accurate mean would be $1368.34 \mathrm{Wm}^{2}$.

The energy emitted by the planet must equal the energy absorbed by the planet and we can calculate this using the Stefan-Boltzmann Law. Which is the energy flux emitted by a blackbody is related to the fourth power of the body's absolute temperature. In the following example the tidal and core temperatures are added after the albedo adjustment since they are not reduced by the albedo.

$$
\begin{aligned}
& \mathrm{E}=\sigma \mathrm{T}^{4} \\
& \sigma=5.67 \times 10^{-8} \mathrm{Wm}^{2} \mathrm{~K} \mathrm{sec} \\
& \mathrm{~A}=30.6 \% \text { (the planets albedo, this is not actually a constant) } \\
& \sigma \\
& \sigma \mathrm{T}_{\mathrm{bb}}^{4} \times\left(4 \pi \mathrm{R}_{\mathrm{e}}{ }^{2}\right)=\mathrm{S} \pi \mathrm{R}_{\mathrm{e}}{ }^{2} \times(1-\mathrm{A}) \\
& \sigma \mathrm{T}_{\mathrm{bb}}^{4}=\mathrm{S} / 4{ }^{*}(1-\mathrm{A}) \\
& \sigma \mathrm{T}_{\mathrm{bb}}^{4}=1368.24 / 4 \mathrm{Wm}^{2} .694 \\
& \sigma \mathrm{~T}_{\mathrm{bb}}^{4}=247.46 \mathrm{Wm}^{2} \\
& \mathrm{~T}_{\mathrm{bb}}=254.36 \mathrm{~K}
\end{aligned}
$$

Earth's blackbody temperature
$\mathrm{T}_{\mathrm{bb}}=252.23^{\circ} \mathrm{K}\left(-20.92^{\circ} \mathrm{C}\right)$ low
$\mathrm{T}_{\mathrm{bb}}=254.36^{\circ} \mathrm{K}\left(-18.79^{\circ} \mathrm{C}\right)$ mean
$\mathrm{T}_{\mathrm{bb}}=256.54^{\circ} \mathrm{K}\left(-16.51^{\circ} \mathrm{C}\right)$ high

Earth's surface temperature

$$
\mathrm{T}_{\mathrm{s}}=\sim 287.75^{\circ} \mathrm{K}\left(14.6^{\circ} \mathrm{C}\right) \text { today }
$$

The difference between the blackbody and the current temperatures is what we call the 'greenhouse' effect that averages 33.36° Celsius (C), today, although the range is from $35.52^{\circ} \mathrm{C}$ to $31.11^{\circ} \mathrm{C}$ from variations in the 11 year solar cycle. This documented variation means that the stated Blackbody radiation as shown here will give a $4.41^{\circ} \mathrm{C}$ variation or let's say $14.0^{\circ} \mathrm{C}$ plus or minus $2.2^{\circ} \mathrm{C}$ because of the Stefan-Boltzmann Law which has a $4^{\text {th }}$ power amplification. This will result in a slow 11 year cycling fluctuation of energy in the tropics where the bulk of the energy comes in that is not inconsequential.

If we add clouds to the picture it get even more complex as they have a significant effect on the planets albedo as we know from two major volcanoes' both in Indonesia; one in 1815 Tambora and the other in 1883 Krakatoa both of which threw enough particles into the atmosphere to significantly lower the temperature of the planet. Although dust is not a cloud the point is that if the albedo of the
planet is changed it does have a major effect on global temperatures. The lack of thermometers in 1815 means we really don't know what the effect was other than 1816 is known as the year without a summer. The other eruption in 1883 is well documented and is estimated to have dropped world temperatures by $1.20^{\circ} \mathrm{C}$ which would be equivalent to about a 4.2% reduction in the global albedo. The importance of clouds can be seen in the following Chart Figure 3. A reasonably estimate of the total effect of clouds on the global albedo would be about 50% if nothing else changed or a reduction in Albedo from 30% to 15%. Just for reference the Albedo of the moon is 13.6% which if the earth had no clouds or water but still had an atmosphere the black body temperature of the planet would be $268.71^{\circ} \mathrm{K}$ or -4.4° Celsius.

Figure 3, Albedo of various surfaces
Just for sake of argument if we varied the cloud levels by $+/-10 \%$ we find that at low solar flux and high clouds the Blackbody temperature would be $249.46^{\circ} \mathrm{K}$ and with high solar flux and low clouds the Blackbody temperature would be $259.32^{\circ} \mathrm{K}$ a range of $9.86^{\circ} \mathrm{C}$. The reason this is so important is that properly modeling cloud levels is the area with the most uncertainly in the present climate models as clouds form at much lower mesh resolutions (an aspect of the process used) then the present models can deal with even if the formation could be properly modeled.

Despite this variation in incoming solar flux the planet's temperatures has been very stable as shown in Figure 4 so we know there are no positive or negative feedback process of any consequence on the planet that would create a runaway temperature scenario. Other factors are also important in doing climate work such as 52.3% of the solar energy is concentrated within 45.0 degrees of the hot
spot and 77.6% within 60 degrees of the hot spot. And the heat from the core and probably the tides is concentrated where the crust is the thinnest under the oceans and this concentration of energy core heat and tides) combined with Coriolis forces is probably what drives the ocean currents. In my opinion these other important factors are not being considered properly in the climate models, and that results in climate models that don't work properly e.g. the inability to explain why there has been a pause in the warming calculated by NASA and NOAA over that past ten years despite a continuing increase in the level of CO_{2} in the atmosphere.

We also know from geological studies Figure 4 that the planets temperature has been relatively stable over the past 600 million years with a mean of about $17^{\circ} \mathrm{C}$ or 290° Kelvin (K) and with a range of plus or minus $5^{\circ} \mathrm{K}$ or C based on the information in Figure 4. During the past 250 million years CO_{2} concentrations have ranged from a low of $\sim 280 \mathrm{ppm}$ (a historic low) in 1800's to the present low of 410 ppm to a high of over $2,000 \mathrm{ppm}$ probably averaging around $1,500 \mathrm{ppm}$. There was only one other period in the past 600 million years with CO_{2} this low. Going back further CO_{2} was estimated to be as high as $7,000 \mathrm{ppm}$, but we will ignore that for now.

This means that whatever the processes are that relate to determining the thermal balance of the planet they must work within this range of $\sim 12^{\circ} \mathrm{C}$ to be valid. Although Figure 4 shows a range of $10^{\circ} \mathrm{C}$ it would be prudent to spend resources to determine these values with as great accuracy as possible. We'll suggest a mean of $17^{\circ} \mathrm{C}$ with a range from 10° to $24^{\circ} \mathrm{C}$ as being more reasonable in this work. Also we are now in one of only three cold periods which are very rare in the past 600 million years and if we count that partial dip 150 million years ago that means that there is probably a 150 million year cycle there; maybe one of those first determined my Milutin Milankovic.

Figure 4, Geological temperatures and Carbon Dioxide

Additional discussion as to the so called "greenhouse" effect must start with the important correction that this process is not a true greenhouse effect, since it is not the same process that occurs in a greenhouse used to grow food, not even remotely close to it.

The actual process that occurs is based on the structure of the atoms involved and how they interact with the various frequencies of visible and infrared radiation that are in play on the planet after arriving here from the sun. However at this point in time there is no way to correct for the misuse of the words so we are stuck with it and all the complications that therefore arise in trying to properly discuss the issue with lay people and even some with technical knowledge.

The greenhouse effect occurs within the earth's atmosphere and the main constitutes of wet air, by volume ppmv (parts per million by volume) are listed in the following table. Water vapor is 0.25% over the full atmosphere but locally it can be 0.001% to 5% depending on local conditions. Water and CO_{2} are mostly near the surface not in the upper atmosphere so the bulk of the greenhouse effect must be close to the surface. This table is slightly different than most as it shows water.

Gas	Volume	Percentage
Nitrogen $\left(\mathrm{N}_{2}\right)$	$780,840 \mathrm{ppmv}$	$\mathbf{7 8 . 8 8 4 2 \%}$
Oxygen $\left(\mathrm{O}_{2}\right)$	$209,460 \mathrm{ppmv}$	$\mathbf{2 0 . 8 9 2 4 \%}$
Argon (Ar)	$9,340 \mathrm{ppmv}$	0.9316%
Water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2,500 \mathrm{ppmv}$	0.2494%
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$	400 ppmv	0.0399%
Neon (Ne)	18.18 ppmv	0.001813%
Helium (He)	5.24 ppmv	0.000523%
Methane $\left(\mathrm{CH}_{4}\right)$	1.79 ppmv	0.000179%

There are only two of these gases that are relevant to determining how that $33^{\circ} \mathrm{C}$ (today) happens. That is not to say the others do not contribute but that at the present concentrations of Water $\mathrm{H}_{2} \mathrm{O}$ and Carbon Dioxide CO_{2} they are the main determinants. And since we know the range of temperatures that have existed geologically then we have set the range which these two gases must interact in, meaning that any set of equations or models or theories that predict values outside this range must be suspect based on geological evidence.

Also it must be kept in mind that the solar flux falls on a spot centered on a line drawn from the center of the earth to the center of the sun and because of the 23.4° axial tilt of the planet this "Hot" spot moves up and down as the planet moves through its orbit. Because of the shape of the planet the intensity falls off quickly as we move north and south and east and west according to a cosine factor so the heat energy is mostly over oceans near the equator where the atmosphere is the densest.
The first image below Figure 5 shows a recent distribution of water across the planet and it is clearly concentrated over the oceans close to the equator and that results in the heat imbalance and therefore movement north and south as shown in the second image Figure 6.

Figure 5, water vapor concentrated near the equator

Total Sky Albedo

Figure 6, change in albedo

In summary we now know that the Blackbody temperature of the planet is a variable.
$\mathrm{T}_{\text {bы }}=252.23^{\circ} \mathrm{K}\left(-20.92^{\circ} \mathrm{C}\right)$ low at Aphelion
$\mathrm{T}_{\text {bbm }}=254.36^{\circ} \mathrm{K}\left(-18.79^{\circ} \mathrm{C}\right)$ and the yearly mean
$\mathrm{T}_{\mathrm{bbh}}=256.54^{\circ} \mathrm{K}\left(-16.51^{\circ} \mathrm{C}\right)$ high at Perihelion
Therefore the 'greenhouse effect, with clouds as a constant, must be a variable.
$\mathrm{T}_{\mathrm{s}}=\sim 287.75^{\circ} \mathrm{K}\left(14.6^{\circ} \mathrm{C}\right)$ today
$\mathrm{Gh}_{1}=\mathrm{T}_{\text {bol }+} \mathrm{T}_{\mathrm{s}}=35.52^{\circ} \mathrm{C}$
$\mathrm{Gh}_{\mathrm{m}}=\mathrm{T}_{\text {bbm }+} \mathrm{T}_{\mathrm{s}}=32.39^{\circ} \mathrm{C}$
$\mathrm{Gh}_{\mathrm{h}}=\mathrm{T}_{\text {bbh }}+\mathrm{T}_{\mathrm{s}}=31.11^{\circ} \mathrm{C}$

Considering there would probably be fewer clouds during cool period and more clouds during warm period the following would be more like the true effect considering both.
$\mathrm{T}_{\text {bblc }}=252.98^{\circ} \mathrm{K}\left(-20.17^{\circ} \mathrm{C}\right)$ low at Aphelion
$\mathrm{T}_{\text {bbmc }}=254.36^{\circ} \mathrm{K}\left(-18.79^{\circ} \mathrm{C}\right)$ and the yearly mean
$\mathrm{T}_{\text {bbhc }}=255.83^{\circ} \mathrm{K}\left(-17.32^{\circ} \mathrm{C}\right)$ high at Perihelion
Therefore the 'greenhouse effect with clouds included must also be a variable. In this case we assume fewer clouds in cooler periods and more clouds in warmer periods of 2.5% which reduces the range and acts as a negative feedback on the process.
$\mathrm{T}_{\mathrm{s}}=\sim 287.75^{\circ} \mathrm{K}\left(14.6^{\circ} \mathrm{C}\right)$ today
$\mathrm{Gh}_{\text {lc }}=\mathrm{T}_{\text {bblc }+} \mathrm{T}_{\mathrm{s}}=34.77^{\circ} \mathrm{C}$
$\mathrm{Gh}_{\mathrm{mc}}=\mathrm{T}_{\mathrm{bbmc}+} \mathrm{T}_{\mathrm{s}}=32.39^{\circ} \mathrm{C}$
$\mathrm{Gh}_{\text {hc }}=\mathrm{T}_{\mathrm{bbhc}+} \mathrm{T}_{\mathrm{s}}=31.92^{\circ} \mathrm{C}$
Chart 16 on the next page shows the true black body temperature of the planet over the period of one year assuming an atmosphere with no water or no CO_{2}. The blue plot is the actual and the yellow plot is the generally accepted average. The blue curve is plotted from the distance to the sun of the planet and accepted output of the sun in Wm^{2} of the sun. Because of the Stefan-Boltzmann Law the small change in solar radiation reaching the planet from the sun is magnified by the $4^{\text {th }}$ power such that it really does make a difference as is clearly shown in Chart 16.

A swing of 4 degrees Celsius cannot be ignored when developing a climate model, especially when we are talking climate changes of a few degrees from CO_{2} that are going to melt the planet. I cannot understand what has happened to science today it's like a belief in some bizarre pagan god demanding a sacrifice of a virgin girl every day to prevent the rest of us from being consumed by the environmental god Al Gore.

Chart 16, Black Body Temperature of planet -18.76 degrees Celsius

The next Chart, Chrat 17 adds to Chart 16 the NASA global temperatures from three years 2007, 2012 and 2017. The Black Body temperature and the NASA plots are not shown together because it will show a problem. If the planets black body temperature is dropping in the summer, as it must by orbital mechanics, then how can the NASA global temperatures remain constant? The issue that this Chart shows results from NASA using an average value for solar flux rather than the true value.

Chart 17, Black Body Temperature Verses Monthly LOTI Values

One more Chart, Chart 18 shows the difference between the black Body temperature shown in Chart 16 and Chart 17 subtracted from the NASA temperatures. This seems to show that there is some mysterious energy that enters the planet atmosphere to add almost 5 degrees Celsius to the planet during the Aphelion phase of the planets orbit. Clearly something is wrong here and I am reasonably sure that it is the homogenization process that NASA used to make up the global temperature.

Chart 18, Black Body Temperature of planet

The range in temperature just from orbital changes is $4.41^{\circ} \mathrm{C}$ but including clouds that range is reduced to $2.85^{\circ} \mathrm{C}$ however in either case it is significantly more than the warming that the IPCC claims has happened looking at only Carbon Dioxide as the main factor. These are hard numbers based on the solar flux which is known and the orbital parameters of the Earth that are also known. The large temperature variances come from the Stefan-Boltzmann Law; which is the energy flux emitted by a blackbody is related to the fourth power of the body's absolute temperature (meaning we must use kelvin). The fourth power in the equation magnifies the small variation in solar flux significantly.

With the understanding that we have now on the Black Body temperature we can add two key factors that will determine the range of possible global temperatures based on a mathematical development of the sensitivity values of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}. The sensitive of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} determines the delay factor of the thermal energy contained in the atmosphere, the oceans and the land which must leave the planet to put things in balance which is required to happen. Also the warmer the planet gets the fast the heat will leave. These basic principles will allow us to develop a series of curves that represent the possible temperature ranges of the planet in the last section of this paper.

On the next page Figure 8 shows that complexity of the atmospheric energy flows that the global climate models are trying to duplicate in software. Considering that there are no fixed numbers or values and this is a very dynamic situation in which one of the key determinate of "climate" cloud formation has not been modeled it hard for me to see how there is any chance of the models being anything other but a science/programing toy.

(c) 2005 Brooks/Cole - Thomson

Figure 7 Basic atmospheric flows

Part Two, The Planetary Greenhouse Effect

Now that we have a better understanding of the blackbody temperature of the plant we can discuss the process that brings us to the global temperature range that we live in. Keep in mind that the temperature of the earth would be the same as that found on the moon if there was not some way to make it warmer. The moon is, after all, the same distance from the sun that are our planet is.

So what is the average temperature of the moon? Using the methods we used to calculate the black body temperature of the earth gives us approximately 236° Kelvin or -37° Celsius which is 18° Celsius colder what we calculated for the earth. So the first thing we learn is that there must be two black body temperatures, so to speak. Considering there is an atmosphere but no life would give us 18.2° Celsius of a stored thermal energy buffer. And then we need another 32.8° Celsius to bring us to the 1950-80 Base NASA temperature 14° Celsius. This makes the earth approximately 51° Celsius warmer than the moon

Therefore, the real thermal buffer is somewhere around 50° Celsius plus or minus a degree or two based on NASA data and that is the amount that needs to be explained by any theories of global climate which is not nor has ever has been a constant. Blaming humans for what is obviously a natural variable is foolish at best and criminal if used for political ends.

From part one we know that the amount of thermal radiation that reaches the planet has enough variance to it that it needs to be accounted for in any valid theories or calculations. So with that out of the way we'll now look at the so called greenhouse effect which is approximately 33° Celsius. But this brings us to another issue. The process that allows the suns thermal energy to be held in a buffer and warm the planet is modeled as a log function which means that as the variables $\left(\mathrm{H}_{2} \mathrm{O} \& \mathrm{CO}_{2}\right)$ increases the effect of the variable diminishes such that at some point there is no more effect.

Back in July 1979 the US National Academy Of Sciences was given the task of determining what that log function looked like and they came up with an Ad Hoc Study Group which issued a report by the end of that year. It was thereafter called the Charney Report as Jule G. Charney was the Chairman of the Ad Hock study group. The key result was that the increasing effects from the doubling of CO_{2} were estimated to be from $1.5^{\circ} \mathrm{C}$ to $4.5^{\circ} \mathrm{C}$, or $3.0^{\circ} \mathrm{C}+/-1.5^{\circ} \mathrm{C}$. That ended up being the values that were used to build all the Climate Models used by the IPCC since it did apparently explain the observed changes in global temperatures at that time.

There were three oversights made at that time.

1) There are no natural climate changes (not true based on geological evidence)
2) There was only one peer-reviewed paper on the subject (way too few to define the issue)
3) The effect in question could not be a log function (the equation has to be logistic function)

If the first oversight had not been made Issue two and three would not have occurred because the second oversight produced equations that gave too large a value to the doubling. Years later additional scientific work would indicate that the $3.0^{\circ} \mathrm{C}+/-1.5^{\circ} \mathrm{C}$. was more likely in the range $1.5^{\circ} \mathrm{C}$ $+/-.75 \mathrm{C}$. That work was ignored as the observed temperature changes could not be reconciled with
the lower values and therefor CO_{2} would not be a global problem. Since the geological temperatures showed the Charney report CO_{2} sensitivity value was overestimated and the subject was never revisited, as it should have been, the politicians have reached a solution to a nonexistent problem; but worse their solutions could actually be dangerous to humanity and the planet.

The following logistic equation is commonly found in natural biological process and economic analysis and I believe that it also applies to what we call the Greenhouse effect. My thought is to show that the base is $\mathrm{H}_{2} \mathrm{O}$ and then add to that base a series of curves based on the CO_{2} level so there would be a high and low range for temperatures for every level of $\mathrm{H}_{2} \mathrm{O}$. The reason I was looking for this kind of function was that if a log function is used for the sensitivity values of CO_{2} then it is not asymptotic on both ends above zero. This creates problems at the low end which could not exist in the real world; therefore it cannot be the right curve. The logistic function solves that issue.

The Following Chart is a rough approximation of my thoughts at this time for CO_{2}. It is based on the following Logistic function

$$
Y=C /\left(1+A e^{-B x}\right)
$$

C is the upper limit
A is the number of "doubles" to reach C
B is a number that controls the slope
$\mathrm{X} \quad \mathrm{CO}^{2} \mathrm{ppm}$ starting value

0

Chart 10, CO_{2} Sensitivity Value Model, Logistics Function

The Following Chart is a rough approximation of my thoughts at this time for $\mathrm{H}_{2} \mathrm{O}$. It is based on the following Logistic function. The same logic about using a logistic function verses a log function also applies to water.

$$
Y=C /\left(1+A e^{-B x}\right)
$$

C is the upper limit
A is the number of "doubles" to reach C
B is a number that controls the slope
X $\quad \mathrm{H}_{2} \mathrm{O} \mathrm{ppm}$ starting value

Chart 11, $\mathrm{H}_{2} \mathrm{O}$ Sensitivity Value Model, Logistics Function

The following chart Figure 8 is from NASA and uses anomalies from the base of 14.0° Celsius. This method makes it difficult to make comparisons because the 14.0° base value has no meaning and the chart itself is suspect. So we will now have to look at how the temperature is measured so we can understand the methods because the problem, intentional or not, goes back to physics and how we show information. It's critical that when we talk to nonscientists that information is properly displayed. And nowhere is this more important than when we are discussing global temperature in relationship to anthropogenic climate change.

Figure 8 is also misleading because of the methods used to make this Figure have been modified to make the look fit their theories. The previously shown Figure 4 shows a more reasonable chart of geological temperatures and CO2 values than the misleading one shown in Figure 8 especially over the past ten thousand years. The red circle shows a very missing temperature plot; look on page 20 at Figure 9 and you can see the difference.

Figure 8, NASA Official Temperatures

When we talk about climate (long term changes; centuries) or weather (short term changes; decades) local temperatures are going be in degrees Celsius (C) in the EU and science, or degrees Fahrenheit (F) in America. The base temperature for the earth that NASA established is $14.0^{\circ} \mathrm{C}$ or $57.2^{\circ} \mathrm{F}$; but these are both relative measures and do not tell us how much heat (thermal energy) is there. To know that we must use Kelvin (K) or Rankin (R) and that would be $287.15^{\circ} \mathrm{K}$ and $516.87^{\circ} \mathrm{R}$ all four of those numbers $14.0^{\circ} \mathrm{C}, 287.15^{\circ} \mathrm{K} 57.2^{0} \mathrm{~F}$ and $516.87^{\circ} \mathrm{R}$ are exactly the same temperature, just using a different base. But if the current temperature went from $14.0^{\circ} \mathrm{C}$, to $14.86^{\circ} \mathrm{C}$ that is a 6.14% increase in C , an increase of 2.71% in F and an increase of $.30 \%$ in K and R ; so which one is real? The answer is $.30 \%$ because Kelvin and Rankin are the only ones that measure the total increase in energy! Table One shows these relationships that we just discussed.

		Change in Thermal Energy			
Table One					
	Celsius	Kelvin	Fahrenheit	Rankin	
Base, 1950 to 1980	14.00	287.15	57.20	516.87	
2017	14.86	288.01	58.75	518.42	
Percent Increase	106.14\%	100.30\%	102.71\%	100.30\%	

The next step is to plot Carbon Diode $\left(\mathrm{CO}_{2}\right)$ from NOAA-ESRL and the estimated global temperature as published by NASS-GISS each month. As can be seen in Table One on the next page It doesn't
really matter whether we would use Kelvin and Rankin since the increase in thermal energy is exactly the same either way; but we'll use Kelvin as that is the accepted norm in the scientific community for determining the amount thermal energy in any object especially when looking at changes in temperature or measuring the thermal energy in any object. There are other less known temperature scales that have specific purposes but they don't really apply here in this subject.

The important thing is how much has the global temperature actually gone up since we started to measure CO_{2} in the atmosphere? To show this graphically Chart 8 was constructed by plotting CO_{2} as a percent increase from when it was first measured in 1958, the Black plot, the scale is on the left and it shows CO_{2} going up about 30.0% from 1958 to October of 2018. That is a very large change as anyone would have to agree. Now how about temperature, well when we look at the percentage change in temperature from 1958, using Kelvin (which does measure the change in heat), we find that the changes in global temperature (heat) are almost un-measurable. The scale on the right side had to be expanded 10 times (the range is 40% on the left and 4% on the right) to be able to see the plot in the same chart in any detail. The red plot, starting in 1958, shows that the thermal energy in the earth's atmosphere increased by $.30 \%$; while CO_{2} has increased by 30.0% which is 100 times that of the increase in temperature. So is there really a meaningful link between them that would give as a major problem? The numbers tell us no there isn't.

Chart 8, CO2 and Temperature \% Change from 1958

The next chart is Chart 8a which is the same as Chart 8 except for the scales which are the same for both CO2 and Temperature. As you see the increase in energy, heat, is not visually observably in this
chart hence the need for the previous chart 8 to show the minuscule increase in thermal energy shown by NASA in relationship to the change in CO_{2}. Based to these trends, determined by excel not me , in $2028 \mathrm{CO}_{2}$ will be 428 ppm and temperatures will be 15.0° Celsius and in $2038 \mathrm{CO}_{2}$ will be 458 ppm and temperatures will be 15.6° Celsius. This is what the data shows no matter what the reasons are, so I have no idea how the IPCC gets to predict that the world will end an ten or twenty years.

Chart 8a, CO2 and Temperature \% Change from 1958

Chart 8 and Chart 8a are both based on the following two data series. First NASA-GISS estimates of a global temperature shown as an anomaly (converted to degrees Celsius) as shown in their table Land Ocean Temperature Index (LOTI) and as shown next in Chart 1 as the red plot labeled NASA the scale for the temperatures is on the left. The NASA LOTI temperatures are shown as a 12 month moving average because of the very large monthly variations. Second NOAA-ESRL CO_{2} values in Parts per Million (PPM) which are shown in Chart 1 as a black plot labeled NOAA the scale for CO_{2} is shown on the right no change is required to the NOAA data set as it is ready to use as is. The NASA data which is a mathematical construct shows are swings in temperatures which are not believable and on the global bases that implies very changes in the heat energy on the plant with would appear to be unrealistic. Planetary changes and can realistically by that great month to month.

NASA published data is shown as an anomaly, but what is a temperature anomaly? An anomaly is a deviation from some fixed base value. There were two problems with the system that NASA picked
which was there is no "actual" global temperature and climate is a variable so there cannot be a real base to measure from and certainly not 1950 to 1980. NASA known for its science and engineering expertise back in the day thought they could get around these issues and created a system to do so. First they developed a computer software system they called homogenization which took all the readings from all over the planet and made adjustments to them in the software and then came up with the estimated global temperature. Second they picked the period 1950 to 1980 (30 years) and averaged the values found in that period and came up with 14.00 degrees Celsius and made that their base. Lastly they took the calculated monthly temperature and subtracted the base from it which gave them the anomaly after multiplying the result by 100. In Chart 1 we show the actual temperature not the anomaly by reversing the process. We'll talk more about this later.

Chart 1, NASA and NOAA actual numbers

The problem is that both are arbitrary. Why pick 1950 to 1980 as the base period? Is there something special about that time frame? And as to a global temperature there is no such thing for many reasons like the earth faces the sun so one side is cool and onside it warm. Higher latitudes are cooler than the equator and higher elevations are cooler than lower. And finally there are many areas where there are no measurements taken. Therefore there is no one temperature only an artificial artifact solely dependent on the number of data points and soundness of the software used to create that one temperature! Chart 1 above accurately show only show NASA and NOAA data as published with no manipulation other than using a 12 month moving average for the NASA data.

As previously discussed in this paper on page 19 the current base of 14.0° Celsius was an ad hock selection of 360 values from 1950 to 1980. Using the base NASA shows global temperatures moving up slightly but the same thing could have been shown going back to any block of time. For example the little ice age which reached its lowest temperature about between 1600 and 1650 where there are pictures of ice skating on the Thames in London. This shows that temperatures have been on the upswing for over 400 years now.

The little ice age is also shown in Figure 9 which is a chart that was developed from ice core samples taken from Greenland, there have been several significant swings in temperatures over the past 10,000 years. The point being made here is what period or base should we measure the estimated temperature from as the current NASA section of 14.0° Celsius is just a meaningless arbitrary reference point.

Figure 9, Temperatures from Greenland ice cores

What is shown next are two charts Charts15 and Chart 16 that were developed to show two recommended new bases for showing the global temperature estimate as published by NASA. The first Chart, Chart 15 uses the conventional black body temperature of the planet as the base because it is a real number that is fixed on the orbital parameters and the suns output at -18.75° Celsius (254.39° Kelvin) instead of the arbitrary 14.0° Celsius that NASA concocted. Using this number drastically simplifies the homogenization process. We don't need to discuss the details of why in this paper. The solid blue line at the bottom is the zero point on the scale on the left side. I've also added the geological high (red), mean (green) and low (blue) for reference. This chart shows tow things
number one the magnitude of the real greenhouse effect approximately 33° Celsius. And using that reference puts the current temperature value in prospective, which are that we are way to the low side of geological temperature not high side as we are led to believe.

Chart 15, NASA Anomalies using the Planets Black Body Temperature of $\mathbf{2 5 4 . 3 6}$ degrees Kelvin as the base.

The following Chart 16 shows the same exact temperatures as Chart 15 or for that matter Chart 1 from the new prosed base of 17.0° Celsius which is the estimated mean temperature of the planet geologically as shown in Figure 4. Although I would prefer the black body temperature to be used as the base, that's probably too technical so the next best would be 17.0° Celsius the mean global temperature. And if that 17.0° isn't a good number then the science community should study it and find out what it is, without political interference.

The advantage with this kind of chart is that it shows that the current world temperatures are historically very low as they basically run from $-3.0^{\circ} \mathrm{C}$ to $-2.0^{\circ} \mathrm{C}$ from the global mean. Keep in mind that there is a now panic that if the published global temperatures went up 2.0° Celsius from the base of 14.0° Celsius that the planet would melt and all life would be gone. Well l'm not using new math here so $14.0^{\circ} \mathrm{C}$ plus $2.0^{\circ} \mathrm{C}$ only adds up to $16.0^{\circ} \mathrm{C}$ which is not even to the green line on the chart, the mean average of the planet historic temperature.

What is shown here in Chart 16 is the best base to use to measure from whether we use temperature of anomalies as used by NASA in their homogenization process and also therefore the IPCC. The scientific and engineering reason is that by using the period from 1950 to 1980 the base falls into the period under evaluation and as adjustments are made every month from 1880 to the current month the base period cannot be allowed to change. So how can the base fall inside the range being measured when the entire range is recalculated every month that is using circular logic. I know I would not want to try and program that into the homogenization process.

Part Three, the Probable Range of Temperatures on the Planet

The next Chart, Chart 12 is derived from Chart 10 and Chart 11 and is created using the following logic. The first curve is the dark blue line at the bottom of the S shaped curves which run across Chart 12 from left to right represents the equation for $\mathrm{H}_{2} 0$ previously shown except we start at -18 C which is the accepted blackbody value of the Earth. The curve shown here is therefore the greenhouse effect of $\mathrm{H}_{2} 0$ with no CO_{2} present; we are ignoring other gases as their contribution is minimal at present concentrations. $\mathrm{H}_{2} 0$ is on average $2,500 \mathrm{ppm}$ and that is where the purple vertical line is placed; and that vertical line intersects the dark blue line at about 10 degrees C which just happens to be very close to the lowest estimate for the planets geological temperature as shown by the graphic on page 5 and shown here as a Cyan line. The Red line is the Global max temperature $22^{\circ} \mathrm{C}$, and the Green line is the current global temperature of about $14.6^{\circ} \mathrm{C}$.

Next we add to the base $\mathrm{H}_{2} \mathrm{O}$ line, lines for CO_{2} at various levels in the atmosphere. The core assumption is that as CO_{2} level go up the global temperature will follow by transferring energy to the water the additional heat may increase the level of $\mathrm{H}_{2} \mathrm{O}$ in the atmosphere but there is no evidence
that this varies much at a global level; probably less that a 100 ppm. But both $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} have saturation limits based on the parameters set in the individual curves and so no runaway effect is possible. This conclusion is supported by geological records that indicate the global temperature has ranged about 10 or 12 degrees Celsius and CO_{2} has ranged about 250 to $6,000 \mathrm{ppm}$. The blue dashed line is for $300 \mathrm{ppm} \mathrm{CO}_{2}$ the brown line is for $400 \mathrm{ppm} \mathrm{CO}_{2}$ the dashed gray line is for 500 $\mathrm{ppm} \mathrm{CO}_{2}$ and the solid black line is $1,000 \mathrm{ppm}$ of CO_{2} which is the saturation point above which there is no longer any meaningful greenhouse effect. The brown line for $400 \mathrm{ppm} \mathrm{CO}_{2}$ intersects the horizontal green line at 15 degrees C which is the approximate current global temperature. The black line for $1,000 \mathrm{PPM} \mathrm{CO}_{2}$ the maximum temperature for the planet based on CO_{2}. It would appear that the level of CO_{2} in the atmosphere has never been much lower than the present level as the black line intersects the cyan line at $2,000 \mathrm{ppm}$ for $\mathrm{H}_{2} \mathrm{O}$.

Now for a summary we have an exploded view of Chart 12 labeled as Chart 13 where we zoom in to get more detail of the temperature ranges of the planet based on realistic numbers and equations. The chart is based on the black body temperature of the planet, realistic logistics equations for $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} and lastly geologic temperature estimates for lows, highs and a mean. None of these can be shown to be false, although I would be the first to agree that these numbers could be adjusted some by serious scientific work.

- We know that the Black Body temperature of the Earth is 254.39° Kelvin on average but there is a variance of about 2.15° Celsius plus or minus.
- We know that the amount of $\mathrm{H}_{2} \mathrm{O}$ (water) in the earth's atmosphere is the most significant greenhouse agent and is the primary determinant of the temperature of the planet at about 85.0% of the total greenhouse effect.
- We know that the amount of CO_{2} (Carbon Dioxide) in the earth's atmosphere is also a greenhouse agent but it is only a secondary determinant of the temperature of the planet at maybe 15.0% of the total greenhouse effect.
- We have developed an equation for the sensitivity values of $\mathrm{H}_{2} \mathrm{O}$ and CO^{2} using a logistics function rather than a log function since a logistic function more accurately represents the actual process of this kind of item as there are limits to the values both negative and positive on the planet temperature.
- We also know the probable high, low and mean geological temperatures of the planet for the past 600 million years.
- We know that the actual temperature of the planet is very stable despite all the major events that have impacted the planet which indicates that the positive and negative feedbacks are in balance.

Based on those above facts and acquired knowledge we can create a representation of all the possible stable temperatures for different amounts of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} in the planet's atmosphere and that is now shown graphically in Chart 13. The box represented between the vertical yellow lines and the red and blue horizontal lines contain all reasonable possible temperatures for the planet based on what we have developed in the analysis.

Chart 13, Global Temperature $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Logistics Function

The amount of water in the earth's atmosphere probably falls between 2,250 ppm (.225\%) and 2,900 ppm (.29\%) which is represented by the two yellow vertical lines and these values are probably directly related to the planets temperature. The estimated minimum and maximum global temperatures appear to fall between 10° and 22° Celsius which falls between the blue and red horizontal lines. The last thing we know is that the current temperature is about 14.7° Celsius (green horizontal line) and the water in the atmosphere is $.25 \%$ which is shown as purple vertical line. Lastly using the logistics functions that were developed we have these curves.

- First the dark blue curve starting at the bottom left and running to the upper right which represents the planet's atmospheric temperature with no CO_{2} in it.
- Second we have the dashed cyan curve starting at the bottom left and running to the upper right which represents the planet's atmospheric temperature with CO_{2} at the 300 ppm level, and the lower yellow vertical line intersects the solid blue line and the lowest estimated global temperature.
- Third we have the brown curve starting at the bottom left and running to the upper right which represents the planet's atmospheric temperature with CO_{2} at the 400 ppm level, which is where it is today.
- Forth we have the dashed grey curve starting at the bottom left and running to the upper right which represents the planet's atmospheric temperature with CO_{2} at the 500 ppm .
- Fifth the black curve starting at the bottom left and running to the upper right which represents the planet's atmospheric temperature with CO_{2} at the $1,000 \mathrm{ppm}$ level or higher as after that point it has little to no effect on temperature. This curve intersects the red maximum global temperature and the vertical yellow line for the highest level of water in the atmosphere.
- In summary the vertical purple line and the green horizontal line intersect the brown curve such that the current planet's climate/weather conditions are satisfied. The $\mathrm{H}_{2} \mathrm{O}$ is at $.25 \%$, the CO_{2} is at 413 ppm and the current temperature is 14.9° Celsius. The green circle.
- The 14.9° Celsius Temperature is suspect because of the homogenization process that NASA uses but that is a separate subject only briefly discussed here on Pages 9 and 10. But with no solution to the problem presented here we really don't know what the planets temperature is with any specificity.

Now it is given that these numbers are estimates and so may very some, but we also know that the earth's temperature is inherently very stable so they cannot very much from what is shown here in Chart 13. The key factor is that the planets temperature is a function of the amount of water in the atmosphere and that the CO_{2} levels contribute to that temperature. However since there is a saturation point to the Caron Dioxide / Water dynamic governed by the method that energy is transfer between the two it requires a higher percentage of water in the atmosphere to be able to absorb the additional carbon captured energy so the two cannot be looked at independently.

Therefore it is my suspicion that NASA is either measuring weather or they do not understand that there are cycles to climate. This fundamental error results in an improper set of assumptions such as ignoring the variability of the Black Body temperature of the planet and assuming that CO_{2} either is the primary driver of global temperatures or that it has a greater influence then it does since it is the water that actually holds the heat not the Carbon Dioxide. The core problem is the sensitivity value that the IPCC assigned to CO_{2} in 1979. That value is the subject for a different paper but in general peer-reviewed papers since then have significantly reduced that value ever since. That alone destroys every IPCC global climate model.

But now that politics has gotten involved there is no hope of changing the direction as government propaganda and misinformation now drives the narrative in the elementary schools, the high schools the and colleges. It will take multiple generations to undo the damage that was done which takes it into the next century.

Starting on page 30 there are two 4 page printouts of NASA table LOTI. The first is from April 2008 which is the oldest one I saved and the second is January 2020. So let's look at the numbers that NASA publishes. First on the April 2008 printout look at the anomalies for the entire year 2007 which average .539 degrees Celsius higher than the base. Then look at the same values on the January 2020 printout and we find the average for 2007 is .663 degrees Celsius. 123 degrees Celsius higher
than 2007 so in 12 years and 1 months the past got 23.0% warmer --- now how did that happen? The answer is simple the process that NASA uses to calculate anomalies are not stable and therefore all the numbers are a variable. If the past, can be 23% warmer after 12 years that makes the present 23.0% colder so how do we even know what the global temperature is? The answer lies in the way that NASA calculates global temperatures which they call homogenization. The bottom line is that every time they run the program they get different results. Some of these "adjustments" seem to give the impression that there is a desired result that isn't there in the raw data but by tweaking the program the raw data can be made to look like what someone wants it's to look.

So, now let's look at two more charts the first, Chart 1a, will be a plot of 12 years of temperatures (from LOTI Table) out of the past 20 years (to simplify the chart). The plot shows that, for example, for the anomalies of 1999 from the year 2012 to the current month of 2019 (cyan plot with a square of the year) that in the succeeding years up to the current year the NASA process almost never gives the same value in succeeding years the plot should just be a straight line. Some of these changes are large and others aren't. Some move up and some move down.

Now look at the plots for 2015, 2016, 2017, 2018 and 2019, the top five plots. That doesn't seem to make sense since there was not a corresponding large jump in CO_{2} so why the dramatic change?

Now let's look at another chart, Chart 1b, this one is from NOAA showing CO_{2} levels in PPM. This chart was developed the same way that the previous one was and we see that the values for CO_{2} do
not change after they are calculated. This is the way a chart of this type should look and so there is no reason to ever show this chart, Chart 1 b , of CO_{2} the one on page 19 is sufficient.

So looking back to the weeks after the November 2018 election we have Alexandria Ocasio-Cortez (AOC) telling us that we only have 12 more years to live if we didn't give up all carbon based fuels that we use "immediately" so; we now have a hard date to measure from and we also know that the point of no return is an increase of 2.0° Celsius from the base of 14.0° Celsius or 16.0° Celsius. Now 12 Years from November 2018 would be November 2030 but will be generous and say we have until January 2031. The present global temperature is $.93^{\circ}$ Celsius above the base of 14.0° Celsius or 14.93° Celsius. This only gives us 1.07° Celsius of increase left as we have already used up 46.5% of the available buffer before we die.

Do we really believe any of this, I don't! And apparently neither to the insurance companies or any of the communities on the shorelines around the entire planet believe this. And I also believe that the NASA numbers are manipulated to give results that the politicians want --- this entire climate change scare is all made up!

The following from Sir Karl Pooper should be understood by everyone in science as gospel.

Sir Karl Raimund Popper (28 July 1902-17 September 1994) was an Austrian and British philosopher and a professor at the London School of Economics. He is considered one of the most influential philosophers for science of the 20th century, and he also wrote extensively on social and political philosophy. The following quotes of his apply to this subject.

If we are uncritical we shall always find what we want: we shall look for, and find, confirmations, and we shall look away from, and not see, whatever might be dangerous to our pet theories.

Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve.
... (S)cience is one of the very few human activities - perhaps the only one — in which errors are systematically criticized and fairly often, in time, corrected.

David J. Pristash, Independent Researcher
BBA, EMBA, Graduate GE management program, Captain US ARMY 18A (WIA Retired),
Eight issued patents'
Member Beta Gamma Sigma
Brecksville Ohio 44141
Email David.Pristash@gmail.com
Face Book www.facebook.com/david.pristash
Blog www.centinel2012.com
Cell 2162724583

GLOBAL Land-Ocean Temperature Index in 0.01 degrees Celsius base period: 1951-1980
sources: GHCN-v3 1880-11/2012 + SST: 1880-11/1981 HadISST1
12/1981-11/2012 Reynolds v2 using elimination of outliers and homogeneity adjustment

Notes: 1950 DJF $=$ Dec 1949 - Feb 1950 ; $* * * * *=$ missing
April 2008

 *

 $\begin{array}{llllllllllll}u & H & N & N & 0 & \infty & n & 6 & M & M & N & -1 \\ u & N & M & \sim & M & N & -1 & N & M & N & M & \underset{1}{l} \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

GLOBAL Land-Ocean Temperature Index in 0.01 degrees Celsius base period: 1951-1980

```
sources: GHCN-v3 1880-11/2012 + SST: 1880-11/1981 HadISST1
```

12/1981-11/2012 Reynolds v2 using elimination of outliers and homogeneity adjustment

Notes: 1950 DJF = Dec 1949 - Feb 1950 ; ***** = missing
Date of this paper

 AnnMean

ロの

\checkmark	－	6	N	∞	σ	\bigcirc
$\stackrel{\square}{7}$	－	$\stackrel{-}{1}$	$\stackrel{-}{ }$	－1	$\stackrel{\square}{1}$	N
or	の	の	の	σ	σ	の
－	－	\square	$\stackrel{-}{ }$	$\stackrel{-}{ }$	$\stackrel{\rightharpoonup}{ }$	\square
N	の	∞	m	N	の	\bigcirc
$\stackrel{-}{ }$	\square	m	\cdots	－1	N	N
1	1	1	1	1	1	，
N	∞	∞	\bigcirc	m	m	\cdots
N	\cdots	m	\cdots	m	m	m
1	1	1	1	，	1	1
\bigcirc	m	\square	∞	N	0	$\stackrel{1}{ }$
N	1	\cdots	$1 \sim$	m	N	N
1		1	1	1	I	1
N	σ	6	N	σ	\checkmark	\neg
1	1	$\stackrel{\rightharpoonup}{1}$	6	\checkmark	N	m
		I	1	1	I	1

 $\begin{array}{ccccccc}\text { M } & \text { r } & \text { N } & \text { r } & 6 & 0 & 6 \\ 1 & N & \text { M } & \text { r } & 1 & N & N\end{array}$ $\begin{array}{lllllll}\sim & 0 & 0 & m & \infty & 6 & N \\ 1 & N & M & N & H & N & N\end{array}$ $\begin{array}{lllll}6 & -1 & N & \text { M } \\ \text {－} & \text { M } \\ 1 & 1 & 1 & 1 & 1 \\ 1\end{array}$

 $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$
$\begin{array}{lllllll}\sim & 0 & ウ & \cap & M & \infty & N \\ N & 1 & M & \cap & \forall & N & N\end{array}$

or	6	\bigcirc	ம）	∇	N	∇
N		m	$1)$	\checkmark	${ }^{-1}$	N
1		1	1	1	1	1
∇	σ	∞	$\stackrel{+}{*}$	に）	\checkmark	N
N	1	N	6	N	N	$\stackrel{-1}{ }$
1		1	I	1	I	1
or	m	∇	m	∇	∇	N
1	1	\checkmark	6	\cdots	N	N
		1	1	1	1	1
\bigcirc	\checkmark	N	N	N	\bigcirc	∇
	N	\cdots	ค）	∇	N	N
	1	1	，	I	I	1
『	$1)$	6	N	∞	σ	\bigcirc
$\stackrel{-1}{ }$	－	${ }^{-1}$	$\stackrel{\square}{1}$	$\stackrel{-1}{ }$	$\stackrel{-1}{ }$	N
σ	の	の	の	の	σ	σ
\square	\square	\square	$\stackrel{-}{ }$	\square	$\stackrel{-1}{ }$	$\stackrel{-}{ }$

 4.

1994	26	2	30	40	27	43	30	22	32	41	44	38	31	30	15	33	32	39	1994
1995	52	79	47	46	28	42	45	46	34	47	44	25	45	46	56	40	44	42	1995
1996	24	46	33	32	28	25	36	48	25	19	39	37	33	32	32	31	36	27	1996
1997	30	41	52	35	36	54	34	43	52	60	64	58	46	45	36	41	44	59	1997
1998	58	87	64	64	66	76	68	66	42	42	44	56	61	61	68	65	70	43	1998
1999	49	65	32	33	27	36	38	32	39	34	37	42	39	40	56	31	35	37	1999
2000	26	56	55	57	35	39	38	42	40	28	31	29	40	41	41	49	40	33	2000
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	J-D	D-N	DJF	MAM	JJA	SON	Year
2001	46	44	56	51	58	52	59	50	52	51	73	56	54	52	39	55	54	59	2001
2002	78	79	88	58	63	53	61	53	64	54	59	44	63	64	71	70	55	59	2002
2003	75	58	60	55	61	48	58	65	63	74	53	75	62	60	59	59	57	63	2003
2004	58	73	63	61	39	44	27	47	51	61	73	51	54	56	69	55	39	62	2004
2005	75	60	74	68	63	65	62	62	72	75	74	68	68	67	62	69	63	73	2005
2006	56	73	63	49	50	66	55	71	65	69	73	79	64	63	66	54	64	69	2006
2007	102	70	72	75	68	61	60	60	60	59	58	49	66	69	84	72	60	59	2007
2008	30	38	74	53	49	49	60	47	61	65	69	54	54	54	39	59	52	65	2008
2009	65	53	54	60	66	65	71	68	73	66	81	67	66	65	58	60	68	73	2009
2010	75	83	91	84	76	68	64	66	63	70	82	45	72	74	75	84	66	72	2010
2011	52	49	65	65	52	61	71	73	58	66	59	61	61	59	49	60	68	61	2011
2012	50	49	57	71	77	65	58	64	71	79	79	53	64	65	53	69	62	76	2012
2013	71	63	67	56	62	71	61	70	77	69	85	70	68	67	62	62	67	77	2013
2014	76	55	79	81	85	67	59	81	85	80	67	80	75	74	67	82	69	77	2014
2015	85	90	96	77	79	81	75	83	84	108	106	116	90	87	85	84	80	100	2015
2016	117	137	136	112	96	82	84	101	91	88	91	86	102	104	123	115	89	90	2016
2017	102	114	116	94	90	72	82	87	79	90	88	94	92	92	101	100	80	86	2017
2018	82	85	90	90	83	78	83	77	80	101	83	92	85	85	87	87	79	88	2018
2019	93	96	118	102	86	92	94	94	92	102	100	110	98	97	94	102	93	98	2019
2020	117	125	119	$\star \star \star \star$	****	$\star \star \star \star$	$\star \star * *$	***	117	****	****	****	2020						
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	J-D	D-N	DJF	MAM	JJA	SON	Year
Divide by 100 to get changes in degrees Celsius (deg-C).																			
Multiply that result by $1.8(=9 / 5)$ to get changes in degrees Fahrenheit (deg-F).																			
Examp		-		Table	Val chan	$\begin{aligned} & \text { re }: \\ & \text { ye : } \end{aligned}$	$0 .$	$\begin{aligned} & 40 \\ & 40 \mathrm{dec} \end{aligned}$	$g-C$	or 0	72 de	$g-F$							

